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CLASSIFICATION OF TWO-DIMENSIONAL ISENTROPIC GAS FLOWS OF DOUBLE-WAVE TYPE* 

S.V. MELESHKO 

A complete classification of two-dimensional isentropic gas flows of 
double-wave type (see /1 - 6/) when there is functional arbitrariness in 
the general solution of a Cauchy problem is given. Double waves were 
discussed earlier in the case of potential flows /l/. After replacing 
the potentiality conditions of the flow by the weaker- condition regarding 
the rectilinearity of the contour lines (see /2/), a complete classification 
of two-dimensional isentropic gas flows of double-wave type with straight 
contour line5 is given. 

The gas-dynamic equations of a polytropic gas in the two-dimensional isentropic case can 
be written as 

“‘y- 1, 8 = C?.‘% 

where (I+, t;) are the gas velocities, c is the velocity of light, and f denotes the polytropic 
exponent of the gas. 

Let V be a local neighbourhood_of the point(l.lC. 1.2') in the space of the velocity locus. 
It is required that a travelling wave /i/ has, for a fixed function 5=5(a,.v,), (u1. v*) E 1' # 
an arbitrariness regarding at least one function in the general solution of the Cauchy problem. 

In the simplest case where Eli? - fZt2? = ii (ei = aeial;,.($, =0,1-x5), it can be shown that the 
general solution has two arbitrary functions of one argument, and therefore we assume that 
e,* t e2? f- 0. Then by rotating the coordinate system we can always contrive that in the new 
system, in a certain nei@bcarhoo6 7 of the pornt (c.~'. fzc) of the velocity locus, the inequality 

W&ti.iJ.': f 0 (2) 

will hold. 
Further analysis is based onthe fact -ihat any consistent system of differential equations, 

after a finite number of extensicns becomes an involutive system (see /7, 8/). If a system 
of differential equations is invclutlve, t&r. the functional arbitrariness in the solution is 
determined by Cartan's characters which are connected in a definite way with the higher 
parametric determinants (see /7/j. For solutions to exist, which have a functional 
arbitrariness, it is necessary that the rank of the matrix of the coefficients of the higher 
derivatives should not be equal to the number of all higher derivatives (under whatever 
assumptions], 

On substituting 5 = 9 (L;.L.?) into Eq. (1) we obtain a system of quasilinear differential 
equations which is not involutive. It is necessary to extend thissystemwhen investigating 
it for consistency. Partially extending it, we change tc the dependent variables vl. vq, ~‘3 = 

ilv,:dr, - i?~,~,dr,. and obtain an overdeterzined system of five quasilinear first-order differential 
equations 

LT. s F,; _ i I.$,,' 2 Ei,?,' + 5$,' = t?. i=f.Tt (3) 
i=, 
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Investigating this system for consistency, we obtain one more first-order equation 

%@?a - $1D,.P1- 2e,e2D1s2 - q2D2S2 = 

where Di (i = 0,1, 2) are total derivatives with respect to sir and the coefficients bikr a,(:, 

k = I, 2;j = 1, 2, 3)depend on vl and V, only. Here we do not give the forms of bik and al 

since they are somewhat cumbersome. 
Thus, the continuous solution of system (3) necessarily satisfies Eq.(4), and we can 

deduce the following. Firstly the vortex-free isentropic double waves (us = 0) either have two 

arbitrary functions of one argument in the general solution of the Cauchy problem, or by the 
theorem on the reduction of double waves they are reduced to invariant solutions (see /9/). 
We therefore discuss below the turbulent solutions (v$#O). Secondly, the maximalarbitrariness 

in the solution of a two-dimensional double isentropic wave for the specified function e= 

e (v,, I.*) is possible regarding three functions of one argument. 

It can be shown that system (3),(4) is involutive only inthe case when 
2 

~~2, e=+ c (PA - c-k)? 
P=1 

(Cl I and cL are arbitrary constants). Here Eq.(4) takes the form 

8 (elpL3 - ezp,3) - +$ tpll - p22) = 0 

and the solution of system (3),(4) has three arbitary functions of one argument. Earlier, in 
classifying two-dimensional isentropic double waves with straight contour lines, such an 
equation for double waves was obtained in /2/, but the arbitrariness of the solution there 
indicated consisted of two functions of one argument, that is, the requirement ofrectilinearity 
of the level reduces the.arbitrariness to two functions of one argument. We will exclude the 
double-wave equation in the locus space from further discussion. 

If conditions (5) are not satisfied, system (3), (4) is not involutive, and it is necessary 
to extend it when checking for consistency. 

After extending the system by introducing dependent variables Go = p1’ and v5 =p12, and 
investigating the overdetermined system of ten quasilinear first-order differential equations 
in the dependent variables L‘,, L',... ~‘5, as was done for system (31, we obtain one more first- 
order equation 

In the above, the coefficients Qi = Q1 (I',.. . ,rSj (i = 3. 4. 5) are linear functions of l'l. L',. 
and L'~. The form of these functions, being lengthy, is not given here. 

It follows from the form of the overdetermined system of quasilinear differential equations 
in cl. L'*, . . ~'sthat the parametric derivatives of higher order for the (cz - I)-th extension can 
be @L, Bz,~(I= 3.4. 5) only. Therefore, from among Cartan's characters responsible for the 
functional arbitrariness, only the first (0)) is non-zero, and at the same time the inequality 
0.<uo,<3 holds. 

If the system is in involution with Cartan's character then crl functions of one argument 
are arbitary in the generai solution of the Cauchy problem. Therefore the maximum possible 
arbitrariness regarding three functions of one argument is achieved only when 

Qd z 0 (i = 3, 4, 5) (7 

otherwise 0, < 3. It follows from the form of the coefficients Qi that the identities (7) 
are satisfied only when conditions (5) holds. Therefore, QJ + Q12 -+ Q,2+ 0. 

After twice extending the overdetermined system of quasilinear differential equtions in 
vr, L'(. . ., us, and compiling the linear combinations by excluding the main derivatives relatively 

to pllli (i = 3, 4, 5), we obtain the following system of four linear algebraic equations: 

((e12 i 8:) Q2 - e,'Qs) p1113 = f2 

6, (- vpQJ - h2Q5) pJ T e,qlQ5pl11~ + 8, (-q2~( -L 2e1e2Q5) p1,15 = j, 
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where the functions fi (i = 1, 2, 3, 4) depend on derivatives of order not higher than the second. 
Because of the linearity of the extended systems with respect to higher derivatives, 

the process of constructing the linear combinations (8) can be performed in matrix form, 
which makes the mathematical operation much,simpler. 

It follows from (8) that for arbitrariness to exist in the general solution of the 
Cauchy problem it is necessary to satisfy the equation 

(((e,? -/- 927 99 - tW?s)' + Q,') (W,*--9e192Q*QS + $,06*)=0 (9) 

which is an algebraic equation in ~1. v2, . . . . vs. Extending (9) and performing an analogous 
investigation of the matrix consisting of the coefficients of the higher derivatives , we 
arrive at only two cases: either by the reduction theorem /9/ a double wave is reduced to an 
invariant solution,ora constantf3> Oexists such that S1* - @8,2 = 0. (The lengthy intermediate 
operations are omitted: here we give the final result only. 

In the latter case, -we can achieve satisfaction of the equation 0, = 0, that is 0 = 
8 (4 l by rotating the coordinate system. 

Consider the case when e2 = 0. Substituting 9 = 8 (L'l)into (3) and repeating the similar 
investigation regarding the existence of solutions of system (3) which possess functional 
arbitrariness, we arrive only at the case where p*l = 0. Then, by the fourth equation of 
system (3) we have pz2* = -D,($,p11:$2)= 0, and therefore 

On substituting this expression into (3), and splitting s,, we obtain a hyperbolic 
system cf three equasilinear differential equations in i‘,(J>, l). gi (J]. f! (I = 1. 2) 

This system is easily checked for consistency by cross differentiation. In the case of 
non-vortex flow (p, (I:, we have either 

that is the functions !,,.0 satIsfythe equations of a simple wave as in the one-dimensional 
case, or 

"1 (<I:,-\. I2 g. ir, - l,I (12 

(:. 1: is a:. arbitrary functicr.). Fcr vertex floii (z's i (11, the function cl tl (I‘, Ssho;ild satisfy 
the ordinary third-order differentla; ei;.Jation 

and the functions (I~. 1:. -o,(J~.!J(I -: 1.3) satisfy the overdetermined system of first-order 
differenti- equatiL:s P d; d: 

2 _L',- - g,p,= 
at 

il (i= 1. 2) 
a=1 

61 1 "i ] 
?i- 

- 1‘1 ~ + .$ Wg,=O 
(l4) 

SC, -= 
DII 

&(;-(I - W'$j gi" 

+ = -((i.l ..L 6') .+ g, 
i 

which is in involution and has an arbitrariness regarding one function of one argument (for 
example,g,(z,. 0))Ln the general sclution of the Cauchy problem. 

Thus, we have presented the full classification of two-dimensional waves which have a 
functional arbitrariness in the general solution of Cauchy problems. 

Theorem. The two-dimensional isentropic double waves possessing a functionalarbitrariness 
in the general solution of the Cauchy problem for a given function 9 = 0 (r,. UJ have the 

following forms only: 
1) double waves reduced to invariant solutions; 

2) double waves (5) which possess arbitrariness regarding three functions of one argument; 

3) vortex-free double waves which possess arbitrariness regarding two functions of one 
argument; 
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4) double waves with O(L',), in which the arbitrariness is determined by one function of 

one argument v1 = L‘~ (rlr t), L+ = z,g, (z,, f) + g, (r,. r) , and the following holds: a) condition 

(11) or (12) for g, =O, b) equations (13) and (14) for g, # 0. 
The process by which this classification was established is a generalization of /l/, and 

it can be successfully used for other types of gas flow. For example, for vortex-free 

isentropic flows of a treble-type wave (see /lo/) a solution with maximum possible arbitrariness 
regarding two functions of two arguments exists only when 

Here the travelling wave with *j - Ct.! = Iii (i = 1, 2. 3), where the function n (C,. V,, cs) 

satisfies the equation 

will be the solution. 
As remarked by A.F. Sidorov, after the change Zi' = ri - C,f (i = 1,2,3), a case simply Of 

space potential stationary motions will be obtained in I,' coordinates (all motions are treble 
waves). The representation (15) of 6 will correspond to the Bernoulli integral, and equation 
(16) for II (rl. L'*, L.J will correspond to the equation for the velocity potential, transformed 
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the Legendre change. 
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